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• INTRODUCTION

Underlying the measurement of the upwelling radiation from a ground or sea
surface or a cloud layer by a meteorological satellite such as SMS/GOES 1

• is the theory of atmospheri c radiative transfer. Without a reasonable
understanding of the ramifi cations attendant to this theory , interpretation
and analysis of the radiance data from the satellite , either in streams or
imagery , would be inadequate or completely erroneous. The importance of
the SMS/GOES seri es to many Army missions such as air operations , target
acquisition , terminal homing, and the detection and tracking of severe
weather was already noted in the first report , “Mesoscale Determi nation of
Cloud—Top Height: Problems and Solutions ,” and will not be reiterated.

The present report , the second of a proposed series of papers on the theo-
retical and experimental appl i cations of satellite observations , will deal
in a more understandabl e manner with the theory of radiative transfer as
applied to a cloudy atmosphere. Next , the report will show how the equation
of radiati ve transfer may be sol ved for a nonhomogeneous atmosphere , wi th
brief mention of some other techni ques. Since this equation is to be applied
to cloudy atmospheres , a brief exposition of cloud microstructure is then
in order with particular attention to stratiform arid cumuliform clouds .

Finally, a detailed examination will be made of under what micro physical
conditions a cl oud may be unmistakeably regarded as a blackbody radiator
and what this implies in the determination of cloud—top hei ghts and in
retrieval of surface temperatures.

THEORY OF RADIATIVE TRANSFER

There are several well-known books on radiative transfer [1,2,3] and a vast
amount of open literature and technical reports too numerous to cite here .
Chandrasekhar ’s book [1] is prepare d primarily for the astrophysicists in
their investigation of stellar atmospheres; Goody [2] provides excellent
reference materials on the calculation of atmospheric transmission functions ;

• Kondratyev [3] is more comprehensive and will be found useful in meteorological
applications , though less rigorous in his treatment of radiative transfer.

In this short section , the author summarizes the experiences gained in his
study of radiative transfer and hopes to present the theory in a lucid
manner so that anyone who has been barely exposed to the problems of radia-
tive transfer may be able to follow the exposition. There will be nothing
new or fresh in this approach to the theory ; many of the i deas are drawn
from previous literature .

Radiative transfer theory is a quantitative study of the transfer of radiant
energy through a medium which can scatter , absorb , and emi t radiation. In

C
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representing radiative energy , there are two often-used radi ometri c quanti ties :
radiance and i rradiance (or erni ttance). In astrophysics , they are , respectively,
specifi c intensity and specifi c fl ux. Radiance or intensity is defined as the
energy radiated from a source per unit time per unit projected area per unit
solid angle per unit spectra l interval . In satellite meteorology , when referred
to the infrared band , the physical unit radi ance is often given in milliwatt
per square meter per steradian per unit wavenumber. Spectral irradiance (or
emi ttance) or flux is defined as the energy irradiated upon or emi tted from a
unit surface per unit time per unit spectral interval . The physical unit of
i rradiance is milliwatt per square meter per unit wavenumber. In the solar
radiation region , it is usually expressed in calorie per minute per square
centimeter per unit wavelength. The total fl ux density of solar radiation ,
which is given in calorie per minute per square centimeter or lang ley per m m -

• ute , as used in meteorology , is obtained by integrating solar i rradiance over
all wavelengths.

Wi th these definitions , the equation of radiative transfer along an arbi trary
path according to the law of energy conservation can be written

dI~ = 

~e
1A ds + ~ ds , (1)

where I~ denotes the monochromatic radiance ,a function of position , di rection ,

and wavelength X ;  
~e 

the vol ume extinction coefficient , a function of wavelength;
5 is the path length ; and j~ the source function coefficient to be determined ,

also a function of position , di rection , and wavelength. The fi rst term on the
right side of Eq. (1) represents the reduction of radiation energy due to the
extinction process in the med ium , whereas the second term denotes the increase
of radiation energy carried by scatteri ng and emission processes.

The volume extinction coefficient 
~e 

(cm—’) is related to the mass extinction

• coeffi cient ke (g-’ cm2) by

, (2)

where p is the density of the medium in wh i ch the extinction of radiation
takes place . In general , the extinction coeffi cient consists of two radia-
tion components ; namely, the volume (or mass) scattering i~ and absorption
coefficient 

~a 
Thus ,

= 

~s + 
~a (3)
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Normally, molecules and particul ates in the atmosphere scatter and absorb
solar and infrared radiation . In the infrared window of 9 to 12 micrometers
which is of interest in this report , the author is not too concerned wi th
the scattering by gas mole cules . In comparison with the magnitude of the
scattering by aerosol and cloud particl es, molecular scattering is entirely
negligible in the infrared spectrum . In the solar spectrum , howeve r, molecular
and particulate scatterings are both important.

Returning to Eq. (1), note that in the absence of an externa i source the
equation reduces to a form which, upon integration , gives one of the funda-
mental l aws in radiati on , that is , Beer’s or Bouguer ’s law of transmission.
The geometry is now fixed to avoid an arbi trary path length . Figures 1 and 2
depict such a geometry in two and three dimensions. The radiance becomes a
function of optical path or depth r , zenith angle 0, and azimuth angle 

~~
.

Moreover , the atmosphere has inadvertently been treated as bei ng made up of
,nany stratified l ayers , that is , a plane-parallel atmosphere wi th infinite
hori zontal extent . As a matter of fact, this is how the planeta ry atmosphere
is being handled in the vast majority of publications on visible and infrared
radiative transfer either in a cl ear or a cloudy medium . From the figure ,
Eq. (1) can be transformed into the following expression :

0, 
~~) 

= _B
e
Ix (T; o , ;)dz/cos 0 + j~ (T;  

~~, ~
) dz/cos 0 ‘ (4)

from which we arrive at a form of the radiative transfer equation usually
• found in the literature , by setting

dT = 
~ eth (5)

and p = cos 0; thus ,

dI
~
(r ; o , ~

)
di = I~ (t ; 0, 4) — J

~~
(T ; 0 , 4) . (6)

where the source function

As it stands , the above differential equation can be solved analytically
without having to know what the source J stands for. In the infrared region ,
a nonscattering, plane parallel atmosphere which is in local thermodynamic
equilibri um may be cons i dered. Thus , the source in this case is simply given
by
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Figure 1. A plane —parel lel atmosphere .
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J
~~

( T ;  0 , ~
) = BA (T) ~ (7)

where 
~~
(T) is the well-known Planck function. In the wavelength domain ,

it is given by

B 1) — 2hc2

~5 (e hC/ kt
~~ l )  

, (8)

• whereas in the wavenumbe r domain

B ‘T ” — 2hv 3c2

V ~ 
— 

(e hc
~

”kT _ l )

• where h is the Planck constant , c the speed of light , k the Boltzmann con-
stant , I the temperature of the medium , and v the wavenumber (cm-1).
According to Rossini [4], these constants are , in cgs units ,

2h6 1.191062 x 10~ ergs sec— 1 cm-2 sr~ pm~,

hc/k = 1 .438786 x lO~ pm °K,

c = 2.99792458 x lO’° cm sec~ (in vacuum). (10)

For a purely emissive atmosphere in local thermo dynamic equilibriu m , the
radiative transfer Eq. (6) becomes

• dl (t ;  0 , 4 ,)
• dT 

= I
~~

(-r ; 0 , 4) — B
~

(T) , ( 11)

Now the contribution to extinction comes solely from absorption . This equation
holds for blackbody radiation and can be readily solved by introducin g the
integrating factor e t

~~. In the retrieval of temperature profiles from the
satellite vertical temperature profile radiometer (VTPR) data , Eq. (11) is
solved in a reverse manner to determine the Planck function from which the
atmospheric temperature is extracted. In theory , this equation governs the
generation of infrare d imagery in clear air.

The additional contribution to the source function due to multiple scattering
is found for a scattering atmosphere.

8
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~~, 
= 

0 
P
~
(T; 0 , ~; 0

’ , ~
) I) (T ;  0 ’ , ~~)sin ~ d~~dY .

(12)

It is this source function that complicates the sol ution of the radiative
transfer equation. In the above equation , p~~(T ; 0 , ~ 0’ , ~

‘) is the
normalized phase function , representing the fraction of incident radiant
energy scattered by a unit volume at a level i in the di rection of (o, :)
when that volume is illuminated from the direction (3 ’ , :). In representing
the scattering of polarized light , the intensity component’~ can be describedby the four Stoke ’s parameters . The phase function now consists of four-by-four
elements and is called the phase matrix . The Stoke ’s par~i~~ ters mak e it
possible to determine the state of polarization , w h i Lh is of great va l ue in
explaining many atmospheric optical phenomena but of l i t tle con~~rn in the
infrared spectral region where emission dominates.

To simplify Eq. (12), use ~(= cos e) as the fun ’i~ ’a 1 va r i fti e. ~quation(6) then assumes the following forrri:

dI
~

(T; p,

d~ 
= I

~
(T ;  p,  41)

— 27r +l
- P~~(i; u, •~~; 

1 : ‘ )  l ( : ;  “ : ‘ )  d. ’ d: ’ ; ( 13)

where = Os/Be is the albedo for single scattering, a function of optical
• path.

Equation (13) is valid for solar radiation in the visible band. However ,
the sun ’s rays incident upon the plane—parallel atmosphere are generally
taken to be coming in a parallel beam and , hence , are azimuthal —de pendent.
Solar radiation is different from thermal radiation in that the latter may
be considered isotropi c , and , hence , azimuthal — independent. A parallel
beam of solar radiation incident upon the atmosphere or the earth in the
direction (— ~j~~~,~~~~) has an angular distribution expressible in terms of
Di rac ’s de l ta function in the form

I~~~(T; p , ~
) = E5 (t )  6 ( p — p

0) c S ( 4 1  — 41~~) . (14)

9
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It is convenient to separate the di rect solar radiation field from the
di ffuse radiation field in this analysis. Thus , the total spectral
radiance or intensity may be wri tten as

ii~ 41 ) = Iinc (T;  ii. 41 ) + I~Jj f (T ; ii~ 
•
~~ ) (15)

wh i ch may then be substi tuted into Eq. (13) to yield

~ 

dI~~~(~; ~ = 

~dif~~ 
p ,  41 ) - ~~~~ p(i; p,  41 ; -pt , 41~ )E 5 (r)

2ff +1
- 

~~~~~ 

f  f  p(i; p ,  41 ; p ’ , 41 ’ )  I d~ f (T ; p
I
, 41

1 )  dp ’d41 ’

(16)

where E5(r) 
= lrFe

_T!
~

bo. In this equation , the wavelength subscri pt A has

• I been dropped since it is felt that no misunderstanding should arise by now
as to the monochromatic nature of the radiative transfer equation as
presently formulated. The subscript dif will also be dropped since only
the diffuse radiation field will be dealt wi th . However , the solar term
E5, which is known as the reduced incident or direct radiation in the
literature , must be included in the final accounting of reflected and
transmitted radiation .

In theory , Eq. (16) is the governing equation for visible imagery . It
• applies to a scattering and absorptive atmosphere , whereas Eq. (11) applies

to an absorptive and emissive one. An atmosphere which absorbs necessarily
emits . The emission occurs at much longer wave l ength or small wavenumber ,
the so-called long—wave radiation in meteorology. In a purely scattering

• medi um , = 1 . In a purely absorptive and emissive one , = 0. In genera l ,

in an atmopshere where scatteri ng , absorption , and emission take place
simul taneously, Eq. (11) is added to Eq. (16) to obtain

dI(:; • . ,  ) 
= I(i; ~

) - (1 - ~
) B

x[T(T)]

:~- Fe p ( T ;  p ,  41 ; — 

~~~~
, 41~ )

2ii +l
- 

~L .11 p(i; 
~~, 41 ; p 1 , 41 ’)  I(t; p ’

, 41 ’ )  dp ’d41’ (17)

• 
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This rad iative transfer equation , in i ts t 1 l l  ominous appearance , descri bes
the monochroma tic transfer of sohi t radi ,tt ion •i ~t - rti cd l 1y inhoniogeneous
atmosphere which is assulne d to bn ~~ 

1 r i . ~ r ” I n l y r I IIHi c equi 1 ibri Urn. This
integro— differential equation is d i t t i  ~1t to solvt- f r  t h,  jei~~,il case of
multi pie scattering; thus , nul ier 1 ii t F~U1n i ~u~-- • • ir ~~ r o l  l y bei rI O employed.
Since solar and the rmal i t 1  ~d •~ t r i  • I P t ~ n ~~ u s ’  ri r r i ~~i ons where
ove rl appi rig can be I no ’ ’, sold r t r~ Ill • I t  I t  I , Ii.i I ‘ In ~~r i bt treated
separatel y [5] ; thus , in the in t r i ’  ~~~~ ‘~~~ 

• on tn. ‘ ~ • r  on ~~ ri (Jht
side of Eq. (17) can be ‘wo~e& t and t ‘ 11 ... • r t ~~ is let r

dI (r; 
~ = l( t ;  ~., :) - (1 - •

~~~~ ) B H (  H
- 21T +l

- 2 J• _[ p(t ; ~~, :; ‘ , :‘) I (T; •
‘ , 

~~
‘ )  d ‘d: ’ (18)

which is what is needed in the determination of the radiation properties
of several cloud types. Owing to the isotropic radiation pattern emitted
by the earth ’s surface , we may assume to a goo d app roxima ti on that the
emergent radiation is independent of azimuth angles , there by greatl y
improv ing the appearance of the phase function and hence the transfer
equation . Moreover , if the choi ce i s to work wi th rela ti vel y thi n layers
so that each l ayer becomes essentially homogeneous in its microstructure ,
then the single scatterin g al bedo and the phase function are no longer
functions of the optical path or , more appropr iately, op t ical depth in
view of the plane- parallel medi um. In doing so, Eq. (18) is reduced to

dI (i; p)  —

di 
= I(T; p) — (1 — ~ o

) BV [T(T)]

- +1
- 2~ 

f  p(p , p ’) I(i; p ’ )  d1i’ (1 9)

where the phase function is given by

2ir
p (p, p ’)  = p(p, ~

; p 1 , ~
) d~’ (20)

This is the form of the radiative transfer equation usual ly given in the
literature for infrared radiation. The variable T is also used to denote

11
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the levels at which upward and downward radiation emerges . The emergent
radiances thus illum i nate two hemispheres ; therefore , it would be convenient
to separate the two hemisphere s so that the emerging radiation can be re-
sol ved into an upwelling branch and a downwelling branch . In satellite work ,
interest l ies in the former for this is what the infra red radiometer on board
a satelli te p resumably “sees .” Then , Eq. (19) may be decomposed into two
equat i ons.

Upward: 0 <  p < 1

_ _ _ _ _ _ _  = I(t ;  +p )  
- (1 - ~

) B [T(i)]

- 

~~~~~+2 
~ 

±p ’ )  I(T; ±p ’ )  dp ’ (21a)

Downward : 0 < < 1

dI(r ,- )
~ = -I(T; -p) + (1 - 

~
) B [T(i)]

+ p(-p, ±p ’)  I(i; ±p ’) dp ’ (2 lb)

The scatterin g integrals in Eqs. (21a , b) are represente d , respectively, by

+1 1f  p(+p, ±p ’)  I ( r ;  ±~~‘)  dp ’ p(+p , +p ’)  I(T; + ~~I )  dp ’
- 

f

l 

-u ’) I(i; -p ’)  dp ’ (22a)
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J p(—p, ±~ ‘) I(r; ±~ ‘) dp ’ J p (—;~, i-p ’) I(i; +u ’)
— l o

÷ f  p(-p , -p ’) I(i; -p ’) dp ’ (22b )

With the above expressions , the deri vation of the radiative transfer equation
• for the infrared spectral region is complete . The solutions of Eqs . (2la , b)

for the purpose of examining the optical properties of clouds in satellite
• applications will be presented in later sections.

EXTINCTION COEFFICIENTS AND PHASE FUNCTION

In the radiative transfer equation , there are several optica l parameters
that nee d be fi xed , namely , the extinction , scatteri ng, and absorpt ion
coeff i cients , 0e’ ~~ and 8a ’ deri vable from the so—ca lled Mie parameters ;

the opti cal depth t , obtainable di rectly from these coefficients , as demon-
strated in Eq. (5); and the phase function which is usually made up of two
scatteri ng functions , Rayleigh and Mie. In infrared radiation where thermal
radiation dominates almost completely (see, for exam p le , Yamamoto et al . [6]),

• Rayleigh scattering by air molecules is generally neglected , although it can
be easily computed. It may be incl uded in the following manner:

p(i; p, p ’) = T( i )  M(p, p ’) + [(1 - 1(r)] R(p, p ’)  (23)

where T(r) is the turbidi ty factor defined by

~• ~ T ( r)  = is m~’(Ts m  + Ts r ) (24)

where t s m  and Ts r  represent , respectively , the optical dep ths due to
Mie and Raylei gh scattering. In Eq. (23), M(p , p ’) and R(p, p ’)  are
the Mie and Rayleigh phase functions , respect ively.

However , molecular absorption in the 9- to 12-micrometer window is not negl i-
gible. The most importan t absorber in the wi ndow is water vapor. As a result,
the optical depth parame ter has one component due to water vapor absorption
in addition to the absorption by aerosol and/or cloud particles .

13



Since the un derlyi ng theory and the computational techniques for these
parameters incl uding atmospheric transmission have been discussed in some
detail by Gomez [7], Gillespie and Petracca [8], and Gomez et al. [9]
among others in published ECOM reports , th is short section can serve
as a footnote to them. As a matter of fact, the p resen t work may also
be looked upon as a continuation of their effort in target signature
studies .

It should be pointed out that this laboratory has several computer programs
for compu ting the Mie coefficients and the phase function for any given
particle size distri butions and complex refractive indi ces and for calculat-
in g high—resolution atmospheric transmission due to molecular absorption .

CLOUD MI CROSTRUCTURE

No matter how elegant mathematical techniques may be in computing the
Mie coefficients and in constructing the Mie phase function or scatter-
ing diagram , results from the solution of the radiative transfer equation
will not be very meanin gful if the particle data and the complex refractive
indi ces used in computing them are questionable. Therefore , it is
important to gain a little understanding of cloud physics .

Our planetary atmosphere is never free of aerosol particles , but it is
free of cloud particles for only a small part of the globe , as a glance
over the GOES visible or infrare d imagery will readily show . Aerosol is
a colloidal system in which the dispersed phase is composed of ei ther fine
solid or liquid particles and in which the dispersion medium is usually
the air. There is no clear—cut upper limi t to the size of particl es
comprising the dispersed phase in an aerosol , but as in all other
colloidal systems , it is rather commonly set at 1 micrometer. Haze ,
most smokes , and some fogs and clouds may be regarded as aerosols.
However, it is not good usage to apply the term to ordinary clouds whose
droplets are so large as to rule out the usual concept of colloidal
stability . It is poor usage to apply the term to the dispersed particles

• alone , and aerosol is a system of dispersed phase and dispersing medium
taken together.

Wi th the aerosol thus cl arified , a cloud can now be defined. A cloud
is a visible aggregate of mi nute water and/or ice particles in the
atmosphere above the earth ’s surface . Cloud differs from fog only in
that the latter is , by definiti on , in contact with the earth ’s surface .
Clouds form in the free atmosphere as a result of condensation of
water vapor in rising currents of air and hence by cooling or by the
evapo ration of the l owest stratum of fog. For condensation to take
place at the point of saturation or a low degree of supersaturation in
the atmos phere , condensation nuclei are required for the formation of
water clouds , w h i l e  ice nuclei are require d for ice-crystal clouds . The
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size of cloud droplets varies front one cloud type to another . Within
any given cloud , there always exists a finite range of sizes . Generally,
cloud droplets range between 1 and 100 micrometers in diameter , and hence
are very much smaller than raindro ps , usually of the order of 1 m i l l i m e t e r
or greater.

There is a connection between aerosol and cloud particles , but the connec-
tion is limited only to those aerosol particles which are in the neighbor-
hood of 0.1 micrometer or larger in diameter and which are hygroscopic in
the case of water clouds or have the capacity for ice nucleation in the
case of ice clouds . These aerosol particles which have the ability to
serve as such nuclei are gene rally referred to as cloud condensation nuclei
or ice nuclei. The rest of the aerosol particles that do not partake in
the cloud- or fog-forming proce s can be c lassi f ie d as haze part i cles .
Another phenomenon is what is often called the dry haze , the visible evi-
dence of the existence of aerosol in the air , when atmospher i c humidi ty is
low , or damp haze when humidity is relatively high. In the latter case ,
these haze particles must be hygroscopic. Near or at saturation , they may
then form mist.

Given a slight supersaturation of the order of perhaps O .Ol~ , some of
these haze particl es or cloud embryos may overcome the critica l free
energy point to grow to larger sizes . In a damp haze , there could be a
few scattered droplets , but they are of insufficient numbe r to appear as

• a cloud or fog. Figure 3 is known as the Köhler curve of droplet growth .
The hi ghest point in the curve is the critical point which designates
the so-called critical su persaturation and the critical radius of a

• condensation nucleus. Thus , the critica l point is the dividi ng line
between what the cloud physicist refers to as the haze particles on the
stable side and the cloud droplets on the uns table side . When a condensa-
tion nucleus , necessarily of a sufficient size and hygroscopicity , grows
into a droplet , it may be said that the droplet has reached infinite
dilution . For all p ractica l purposes , a clou d droplet can be cons idered
a pure water droplet.

The somewhat lengthy description of aerosol , haze, and cloud particles• given above was taken from well—known cloud physics books [10 ,11 ,12] and
• the Glossary of Meteorolo~y~ [13] in order to clari fy that aerosol , haze ,J and cloud part i cles do not mean the same thing. In dealing with the

aerosol particles , not all of which can properly be regarded as spherical
• particles , chemical composition shoul d be of concern . In contrast , the

haze particles and the cloud droplets can be treated as spherical particles .
In the former, chemi cal composition is still important , while in the
latter it can be disregarded. In optical property , calculations show
that the extinction coefficient of a spherical part icle 10 micrometers
in diameter is about 30 times greater and that of a 5—micrometer particle
about 10 times greater than that of a 1 -micrometer particle in the 10-
micrometer window wi thout regard to their composition. When particl es

• 
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range from 0.0001 to 0.1 micrometer in diameter , as are usually found in
aerosol , their effect on transmission in the infrared window is quite negli-
gible in comparison with the effect of cloud , haze , or even dust particles
(in a sandstorm), as can be readily inferre d from the figure~ depi cting
extinction and hence transmission in the ECOM report by Gocnez et al. [9].

The study of cloud microstructure is only one facet of our interest in
cloud physics which embraces not only the investigation of the condensation
process and precipitation phys i cs in clouds , but also radiative transfer ,
optical phenomena , electrical phenomena , and a wi de variety of hydro-
dynami c and thermodynamic processes in clouds. In this section , we shall
investigate the statistical features of cloud micr ophysics , ignoring its
dynami c processes leading to the formation of the variou s cloud types and
the techniques for sampling cloud droplets. Cloud and fog sampling has
been in effect over 40 years. Innumerable droplet data have been collected.
Yet , knowledge of the different types of cloud microstructure is still
incomplete. The complexity ari ses from the fact that the mi crostructure
is not only a function of cloud type but also of geographical location ,
position within the cloud , and time of cloud development . Great
effort has been made in categorizing these clouds by means of different
statistical parameters ; howeve r, success has generally been limited. Never-
theless , it may be of some interest to show how cloud microstructure varies
wi th these factors. Figure 4, reproduced from Diem [14], shows the change
as a function of cloud type. Figure 5 from Squires [15] shows the change
wi th geographical location , Fig. 6 from Zai tsev [16] the change with
heig ht level , and Fig . 7 from Low [17] the chan ge w i th time .

Of interest to the cloud physicist are such parameters as the size
range , mean radius , mode radius , median radius , mean-volume radius ,
and liquid water content (LWC) which is expressed in unit of grams per
cubic meter (g rn-3). Thus , particle size , distribution , concentration ,
thermodynamic phase , shape , and orientation constitute the so-called

• microstructure of clouds . Of no less importance , but so far not
• easily measurable , is the percentage of supersaturation attained in a

cloud. In fact, it may be judged to be the most important. Gi ven the
supersaturation and the size distribution of condensation nuclei together
wi th their hygroscopic property , these statistical parameters can be
readily estimated (e.g., [18]). From condensation nucleus measurement,

• Twomey [19] estimated that supersaturation in natural clouds may be as low
as 0.14°’ and as high as 1.1% , depending upon the ascent rate of the parce l
of saturated air and the numbe r of nuclei therein. Following the same
approach , but employing a measuring technique , Low [20] showed that the
supersaturation attained in the ordinary radiation—advection fogs varied
from about 0.03% to about 0.10%, mainly due to radiation cooling.

Next , the liquid water content shall be mentioned briefly. The liquid
water content can be calculated from the number concentration of cloud
droplets (if sampled correctly) and measured with an instrument such as
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the hot—wire LWC meter. In clouds it can vary from about 0.15 g m 3 in a
dry continental cumulus cloud [21] to as high as 3.9 g m 3 in a highly
convective cumulus congestus [22]. The other cloud types apparently fall
somewhere in between these extreme s. As to the fogs , the mi crophys ical
data are not so extensive. Again , the fog microstructure depends upon
the type and other factors; it may be wet or dry . Inland fogs may have
an average value of about 0.17 g m 3 (e .g. ,  [23]) ,  and coastal fogs an
average value of about 0.41 [20 ].

With the droplet data avai lable , an analytical distr ibution or density
function can be chosen to fit these data . For raindrop size distribution ,
the Marshall—Palmer [24] appears to be generally accepted. For cloud
droplet size distribution , a number of distribution functions have been
suggested , notably, Best’s exponential distribution [25], the lo gnornial
distribu tion [26], the gamma distribution [27], and the Khr gian-Mazin
distribution [28].

Because of the comp lex nature of cloud drople t data , these da ta can
f i t a variety of standard or nons tan dar d dens i ty func ti ons , depending upon
where , i n wha t type of cloud , at wha t l evel , an d when they are col lec ted.
It would perhaps be somewhat pedantic to deliberately choose a m ore compli-
cated d istri bution func ti on than a sim p le one . In an exhaus ti ve com par i son
among Bes t ’s, the lo gnorma l, and their own distribution functions on the
bas i s of app roximately half a mi ll i on s tratocumulus clou d dro p le t sam p les ,
Khrgian and Mazin [29] noted that the lognormal distribution showed a
sl ightly greater accuracy than either of the others. Borovikov [11] felt
that the comp lexi ty of work i ng w i th the lo gnormal di str ib ut i on ren dere d
it difficult to han d le in cer tain cases an d woul d perha ps more than offse t
the advan tage gained in greater accuracy . Unti l more convincin g ev id ence
dicta tes otherwise , the author of the p resent paper shall choose the
Khrgian—Mazin distribution function because of its greater simplicity . As
such , the func tion i s given by

n(r) = Ar2 exp(-br ) , (25)

where n(r) is the num ber of droplets per cm 3 i n s i ze r per uni t ra di us
• interval , an d A and b are constants . This distribution may be seen as a

modi fied ganina distribution of two parameters , ~i and ~~, wi th ~ set to 2and ~ = 1/b. In fact , when ~ is set to 0 , the Marshall—Palmer distribution
for raind rops obta i ns.

As a probability density function , the constan t A in Eq. (25) becomes

A = b3/2 (26)

and the othe r stat ist i cal pa rameters calculate d from the momen t genera ti ng
func tion of the gamma d is tri bution are as fol lows :I
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Mean radius rm = 3/b

Mode radius rd = 2/ b

Di s persion a2 = 3/b 2

Liquid water content in g nr3

W = 9.30842 N r~ x lO_ 6 (27)

where N is the total numbe r of drop lets per cm 3 , and rm is expressed in

micrometers . He re , the density of a cloud droplet is assumed to be unity .
However , this assumption cannot be conveniently made in the case of haze
particles , as alre ady noted.

Wi th the distribution function thus f ixed , attention is directed to the
types of clouds to be dealt with . The principal types , wi th the exceptio n
of the ci rrus , but not their variations , wil l be conside red. There is an
extreme pauci ty of cirrus data , and no less serious is the uncertainty
about the scattering properties for the irregularly shaped ice crystals
of the cirrus. In fact , any c louds whose tops reach well above the freezing
level may conta in ice crystals . Single scattering properties of these
nonspherica l ice crysta ls would be difficult to generate. The following
table summarizes the stat ist ics of the warm clouds which wi l l  be used in
the present report :

CLOUD TYPES , TEMPERATUR ES, AND STATISTICAL PARAMETERS

Type T rmin rm rmax LWC ( g m 3) N b NA
(°C) (pm)

St , Sc , and Ac 5 1 4-7 20 0.12-0 .40 125-200 0.750 42 .18750

• Cumulus
(continental) 1 2 5—9 25 0.20-0.50 • 75—1 70 0.600 18.36000

Cumulus
(maritime) 3 2.5 8— 12 30 0.40—0 .80 50—85 0.375 2.24121

Cumulus
(fairly strong) 0 3 10-15 40 0 .60-1.50 25-65 0.300 0.87750

Note : Underlined numbers are being used as computer inputs .

Surfa ce Tem perature = 32°C
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By scannin g the microphysical data documented in the books , particu larly
Borovi kov ’ s , the author mentally averaged the numbers and then juggl ed them
so as to come up with what he believed to be reasonable ranges for the mi ddle
to high clouds in midlatitude summer months . The cloud temperatures we re
obtained in the same manne r by consulting the climatological tables (e.g.,
Upper-A ir Climatology of the United States [30]). With these cloud paramete rs
the radiative transfer equation can be solved and the optical prope rties
and emergent radiances in the infra red window region can be determined.

• SOLUTION OF THE RA DIATIVE TRANSFER EQUATION

There are a number of techniques for solvin g the radiative transfer equation ,
completely or approximate ly. Among them are the so-cal led exact sol ution for
pure Rayleigh scattering [31], the doublin g method for a homogeneous med ium
[32 ,33,34], the i teration method [35,36 ,37], the discrete ordinate method [38],
the spherical harmonics technique (e.g., [39]), the invariant imbedding
method [40], and the Monte Carlo method [41]. These di fferent methods have
been reviewed by Yamamoto and Tanaka [42] and by Hansen and Travis [43].

A majori ty of the authors dealing wi th transfer problems are either astro-
phys i c ists or physic ists . Generally , they are concerne d w i th the stellar or
solar radiation . Apparently, they we re not interested in radiative trans fer
in the infrare d spectral region until the successful orbiting of the TIROS
series in early 1960 made infrared clou d imagery availa b le to the meteoro-
lo g ists day and night . Even so , comparatively fewer papers have been
published on this subject . Yamamoto et al. [6] seem to be among the earliest
atmospheric physicists to deal seriously with the scattering , absor pti ve , and
emissive properties of water clouds in the 10-micrometer infrare d window ,
first by expanding the transmission , scatteri ng, and emission func ti ons i nto
power series and then by i teration to obtain the final solution .

In a later paper , Yamamoto et al. [44] showed how to obtai n integrated
upwel ling and downwellin g radiation over a broad infrared band on the basis
of the same scheme. Zdunkowski and Choronenko [45] employed a straightforward
iterative technique to investigate the blackness of isola ted clouds . Hunt
[46] used the matrix operation method to solve the transfer equation in both
visible and infrare d spectral regions and presente d numerous tables to depict
the opti cal properties of both water and ice clouds ; in doing so , he assumed
the ice crystals to be spheri cal . In all these stu d ies , clou ds are assumed
to be homogeneous in both temperature distribution and droplet number concentra-
tion .

Below , the equation will be solved by the Gauss-Seidel i teration method [47],
followi ng Herman and Browning [35]. Equations (2la) and (2lb) are reformu l ated
as fol lows :

I
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dI(;~~ ~~ I (~ ; +p) — J (-r- ; +p)  (21a)

dI(~ , ~~ - I(~ ; -p) + J(i; -p )  (2lb)

where
- +1

J(t; +p) = (1 - ~
) B[T( t ) ]  + p(+ p; ±p ’)  1(1; ~~‘ ) d p ’

J (T; -p )  = (1 - 

~
) B{T(T) ]  + p(-

~~; 
±p ’ )  I(i; ±p ’)dp ’

Note that the scattering integrals are given by Eqs. (22a) and (22b).

Figure 1 shows that the cloud may be sliced into N thin l ayers of equal
geometr i c th i ckness , as i n our case , or of equal op tical th i ckness , from the
top to the bottom in oppos i te direct i on to geometric hei ght; thus , the upper

• boun dary of the cloud is labeled n = 1, and the f irst layer n = 1 for n = 1 ,
2, 3, . . . N + 1 levels and n = 1, 2 , 3 , . . . N layers . For th~ p resent ,
the optical mass from space down to the upper boundary (i.e., n = I) is taken
to be nil; hence , the optical thickness at n = 1 , -r 1 = 0. Then , 12 = T

i 
+

T ,/T = I + -c + -r , and so on for levels 1, 2, ... N + 1. Wi th this in
• mind , multiply Eq . (21a) by the integrating factor, e

+t
~
I
~ and Eq. (2lb) by

the fac tor , e_tl’~ , and then integrate the resulting expressions successively
from -r

1 
to -r 2 , 12 to 13. and so on. The following i teration formulas are

• obtained:

~

• 

I(T
n
; +~) 

= I(Tn+l ; +~
) e Tn+l

_T
n )/P 

fm n+l 
+p) e

t m
n~~~ ~~

(28a)

I(T ~~; -p)  = I(Tn l ; -p) e T
n
_T

n_ l )/P f  J(t; -p)  e T
n
_t)/

~ ~~

n-i (28b)
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For relatively thin layers of the order of perhaps 20 to 50 meters thick ,
depending on the type of cloud studied , an ari thmetic mean of the source
function J may be taken. Now let 

~~~~ 
±~) be the average source function

at the top and bottom of the nth l ayer and &r k 
= T

n 
— Tn— l where k varies

wi th the specifi cation of n. Equations (28a) and (28b) may then be put
into a rather compact form as fol l ows, upon integration:

I(-r~ ; ±p) = I(T~~1 ; ±p) e~~
Tk/p + 

~~
‘k’ ±i-i ) (1 — e~~

T
k/p) , (29)

where positive values of p (i.e., +p, upwardgoing)

k = n  , a n d l < n < N + l

and for negative values of p (i.e., -p, downwardgoing)

• k = n — l  , a n d l < n < N + l

• In using these compact notations , however , i t  s h o u l d  be noted tha t  ~~~(i~~~; 
-i-: )

and 
~~

(T
n

; —p ) are taken to mean the average radiation emerging at the top
of the nth l ayer and at the bottom of the (n - l)th layer , respectively.

Following Dave [37], the trapezoidal rule of integration will be employed
to handl e the scattering integrals in 2—degree intervals , after havin g

• I obtained the mean intensity of the layer. For the other term in the
source function , an arithmetic mean of the temperatures at two adjacent
levels is taken.

I:

To start Eq. (29), it is assumed that there shall be no multiple scattering
at the beginning level; that is ,

I(t ; +~) 
= I(Tn+l ; +p) e~~

m
n~~ + [1 - 

~o
(Tn
)] B[T(T

n
)] (1 - e~~Tn~~)

(30a)

I(T n
; -u) = I(T n l ; -p) e~~

T
n~ l~~ + [1 - 

~o~
-rn l~~ 

B[T(1n 1 )]  ( 1 - e~~
Tn~l~~)

(30b)
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At this point , it may be appropriate to introduce the bounda ry conditions ,
noting that radiative transfe r is a two-point boundary value prob lem. It
is the usual practice in the literature to assume , though not quite correctly,
that in the infrared region there is no radiation incident on the top of
the cloud. This assumption shall be adopted for the present; then

I(-r i; —p ) = 0 , (31a)

where -r
1 refers to the optical thickness from space to the top of the

cloud , which has al ready been assumed to be zero.

At the bottom of the cloud , if an isolated cl oud is investigated as in
the paper by Zdunkowski and Choronenko [45], the following would apply

I(Tb ; +p) = 0 (31b)

• 
• On the other hand , the ground surface may be the boundary in the case

of a dry column below the cloud base; or a humid col umn together with
ground radiation below the cloud base may be the boundary . In this
present study , the former is adopted; thus ,

I(-r b ; +~) 
= B(Tg) (31c)

where T is the temperature of the ground surface whose emissivit y is
assumed9to be 1. Since this discussion is more centered in the optical
properties of various cloud types at present , such as cloud emissivity
and transmissivi ty, Eqs. (31a), (31b), and (31c) will be used .

Either the top l evel (i.e., n = 1) or the bottom l evel (i.e., n = N + 1)
can be used as a start. For this discussion , begin wi th the top l evel and
proceed to the base. During the downward excursion through each successive
layer to the base , assume that there shall be no upward radiation. However,

• in going from the first to the second l ayer , the scattering due to downward
emission , gi ven by the second term on the right side of Eq. (22b) can no
longer be neglected; it must be incl uded in the computation. As the steps
are traced upward through each succeedin g layer , Eqs. (22a ) and (22b ) come
into the picture . When the top level is reached , the fi rst iteration has
been completed. Equivalently, it may be said that the upward and downward
radiation from fi rst order scatteri ng has been obtained. As the computation
undergoes each successive i t e ra t ion , each successivel y highe r order scat-
tering is taken into account. The iteration procedure terminates when for
m >  1
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• Im+l (T N+l~ 
_P)/I

m (TN+l ; — p )  = c (32)

where c has been set to 1.002 in this study .

So far the computation of the indispensable phase function has not been
mentioned. Two separate computer programs have been obtained through the
courtesy of NASA for the computation of the function. One is slightly
more efficient than the other; however , the radiative transfer computer
program used will accept the coefficients of the Legendre polynomials
given by any phase function computations . Deirniendjian ’s book [48] is
useful for a description of the computational technique for constructing
the Mie scattering functions.

In concluding this section , it may be pointed out that the i teration
scheme as outlined above will rende r it possible to calculate the
transfe r of infrared radiation in nonhomogeneous atmospheres or clouds .
It is also possible to consider the variation of the distribution
functions of molecules and/or particulates , although a large amount of
compu ter time may be required.

NUMERICAL RESULTS

Numerical sol utions of complex integro-differential equations invariably
present the question of how reliable and accurate the numerica l results are
despi te careful attention to the formulation of the algorithm and the con-
vergence criterion . The best way to resolve the question is to compare the
results with controlled or selected experiments . The authors of the present
project hope to conduct such an experiment in the near future . A number of
radiati on results generated by various numerical techniques have alre ady
been published. Thus , from the comparisons of these methods , iefiniti ve in-
formation may be derived concern i ng the reliability of each method employed
in the calculations .

• A comparison of the intensity values given in graphical form by Yamamoto
et al. [6] was more tractable because of their utilization of Dei rmendjian ’s
cumulus cloud model [49] whose phase functions were listed for severa l wave-
lengths in the infrared band. Therefore , it was possible fi rst to check the
phase function of this project for the same cloud model against that of
Deirmendjian ’s (as later tabulated in his book [48]) and then to compare
intensity val ues wi th Yamamoto ’ s at the cloud top and other l evels, utiliz-
ing thei r model cases . The intensity values carefully extracted from their
graphs were found to lie well within 5°’~ of ours in zenith angles from 0 up
to about 60 degrees . Comparison with Hunt’ s cloud emissiv ity and trans-
missivity val ues [46], however , shows some differences because of the uncer-
tainty involved in the values of phase functions. Nevertheless , for the
two cases of water cloud at the li-micrometer wavelength , emissivity and
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transnhissivity values of this project lie within lOY~ of his tabulated values
using Hunt ’ s cloud models. Therefore, it may be stated wi th confi dence that
the numeri cal outputs from this computer program employing the iteration
method are at least comparable with those given by the adding method [46 ]
and the tec hnique of scattering and transmission functions [6].

As i n p u t  data to the computer program , the values of the various cloud types
presented in the table were used and the complex refractive indices for water
sphere compiled by Irvine and Poilack [50] in the 9— to 12.5-micrometer band ,
which approximately corresponds to the bandwidth of infrared imagery in cur-
rent use. Figure 8 shows the size distributions of three cloud models. The
droplet size and the concentration scales for the stratus are at the top and
on the right side of the figure , respectively. The stratus model is again
used to demonstrate in Figure 9 how its vol ume extinction coeffi cient and the
single scattering albedo vary with wavelength. This illustration implies

• that optically a cloud behaves di fferently at different frequencies. The
same figure also shows the change of bl ackbody radiation wi th frequency . The
optical properties of other cloud types will be different , but their vari a-
tions with wavelength fol low closely the curves as depicted in Figure 9.
They will not be repeated for each case. Figure 10 is presented as an example
of the change of cloud emissivity (or transmissivity ) with wavelength and
cl oud depth. The cloud fl ux emissivity is usually defined by

= 2f IA (T;p )pdP/B x(Tc) (33)

whereas from a satellite point of view the upwel ling cloud emissivity
may be expressed by

C X Ix (O; /Bx (Tc) ‘ (34)

where is the cloud temperature B
~
(Tc) its blackbody intensity , and

I A (0,l) the upwe iling radiance at the cloud top. A similar expression
holds for cloud transmissivity , except that the cloud temperature is
now replaced by the Planck function of the surface temperature and the
assumption is made that there is no cloud emission .

Since the present interest is in infrared image ry, only the 11.5-micrometer
window will be i nvestigated , to conserve computer time . The 11.5-micrometer
window lies approximately in the mi ddl e of the frequency response curve
of infrare d imagery . Figure 11 shows how the emissivity of each cloud
model varies with cloud depth . Ordinarily, infrare d imagery at or near
the subsatellite point is of more importance in the determination of
cloud-top height since such imagery enables the determination to be made
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with greater confidence . For this reason , Figure 12 depicts the normal
upweli ing radiat ion at the zenith , as presuma b ly observed by a sa tell ite
radiometer . The insert shows an enlargement of the segment where the
stratus emission approaches blackbody emission at about 650 meters above
the clou d base when no emission from the surface is conside red . When the
surface em i ssion i s i ncluded , the clou d appears to rad iate more ener gy
at 650 meters , thereby causing it to become “b lacker ” at that level than
the blackbod y at the cloud temperature . The normal upward going intensities
at the zenith of other cloud types are presented in Figure 13.

DISCUSSION

In the present investigation , four cloud models have been chosen wh i ch
are believed to be representative of the four cloud types. After experi-
mentation with the stratus cloud of various thicknesses , it was d iscovere d
that , given the mi crophysical parameters of the clou d as ta bulate d in the
t a b l e , no thickness greater than 1 kilometer needed to be considered.
Moreover , the level at wh ich the same cloud approaches the property of a
blackbody varies with wavelengths , as can be readily inferred from the
variation with wavelength of the volume extinction coefficient in Ficiure 9.
The same cl oud will appear the “blackest” in the 11 — to 1 3—micrometer window
region , wh i ch implies that the thickness required for it to radiate like a
blackbody will be at the minimum. In fact, as shown by Hun t [46], for -r =

100, the emissiv ity of the same cloud is 0.8980 in the 3.8-micrometer window ,
bu t 0.9984 in the li—micrometer window . To examine the l iterna l radiation
in detail , the cloud has been divided into SO sublayers . However , this is
not necessar y in p ractice if interest is only in the upwei l ing radiat ion
emerging from the cloud top. The test runs reveal that upweil ing radiances
vary wi thin 0.2% by emp loying either 10 su b layers of 100 m eac h or 50 of 20
m each for a cloud layer.

Fi gure 10 again indi cates that the stratus approaches bi ack body ra di at i on
at a lower level at 12.5 than at 9 micrometers . However , at the same 11.5-

• micrometer wavelen gth , as depicte d in Fi gure 1 1 , the cloud with greater
• liquid water content attains blackbody radiation at a lowe r level than

the one w i th smaller liq ui d water content. Thus , while it takes the
stratus about 550 m in thickness to achieve blackbody radiation , a fairly
stron g convective cloud requires only about 22~ m , about hal f as much.

• In terms of liquid water content , the latter cloud contains fi ve times
as much water as the forme r. Because of the t remendous amount of computer
time required , it has not been possible to establish a tractable relation-
sh i p between the liq uid water con tent of a clou d an d the thi ckness requ i red
of the cloud for blackbody rad iation . Return ing to Figure 10, it may be
noted that at either 9 or 12.5 micrometers the sums of flux emissivity and
transmissivity at all depths are close to unity ; this implies that in the
10-m icrometer infrared band there is little or no flux reflectivity of
concern since

1
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t ÷ e + r = 1 , (~ 5)

where r is the reflectivity by the warm clouds.

When a cloud reaches a thickness such that it radiates almost like a
• blackbody , the upwe lling radiation coming from the cloud top becomes very

nearly isotropic , except towards the limb s . As was also found in our
calculations , Zdunkowsk i and Choronenko [-~H showed isotropic radiation
at the cloud top for the case of an isolated cloud (i.e., wi thout consider-
ing surface emission) and Yamainoto et al . [6] for the cases of nonisolated
clouds (i.e., with surface radiation considered). Since infrare d imagery
is gray—scale contours of cloud-top intensities (i.e. , radiances), the
emergent radiation at or near the zenith is of particular interest, as
already noted. In Figure s 12 and 13 , attention is directed toward the
intersections of the solid and dashed lines . Although only the upwelling
radiation has been displayed at the zenith for each case , it may be
mentioned that up to 60 to 70 degrees the intersections are located at
the same level for the same clou d model as a result of be i ng iso tro pi c .
When there is no surface radiation , the solid curve approaches a straight
l ine (i.e., blackbody radiation) at a l eve l somewhat l ower than that of
the intersection. This is more prominen t in the stratus model. As the
liquid water content or the number of larger droplets increases , the effect
of sur face emission diminishes. The isolated stratus reaches blackbody
radiation at about 660 m from its base , a continental cumulus at about
450 m , a mar iti me cumulus at about 370 m, and a fairly strong cumulus at
abou t 330 m. In contras t, when surface radiation is present , the inter-
sec tions , beyond which the cloud will radiate as a blackbody at its own
tempera ture , are locate d , respectively, at about 940 m , 500 m , 390 m , and
330 m. Onl y in t he las t case , the soli d and dashe d li nes mee t at nearl y
the same level or depth , indicating that surface radiation has little

• effect on the level at which a heavily water-laden cloud attains blackbody
radiation , whe ther in isolation or not.

Wha t has just been discussed appears to be in confl i ct wi th the results
• described in Figure 11 wi th respect to c’oud emissivi ty . It should be

po inted out here that this inconsistency depends upon the application of
L the conce pt of emissiv i ty. The conven t ional conce p t of em i ss i v ity is

defi ned on the bas i s of ra d iat i on flux , expressed by Eq . (33). But from
the point of view of satellite radiometer measures , the emissivity value
should be given by Eq. (34). Thus , it is important that cloud emissivity
be exam i ne d carefully in conjunc tion wi th sa telli te app l ica tions . The clou d

• cases investigated here show that the stratus reaches a depth of about 940 m
(in theory ) instead of 540 m before it becomes a blackbody from radiome tri c
requirements . The continental cumulus must attain about 500 m instead of

• 280 rn , the marit ime cumulus about 390 m i ns tea d of 240 m, and the fairly
s tron g conv ective clou d a bout 330 m instea d of 220 m.
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Of course , no clou d i s ever isolated , nor is any cloud , excep t the fogs ,
ever in immediate contact wi th the ground surface without some intervening
wa ter va por an d temperature distributions , as are assumed in our p resent
investi gation as well as in the studies by Yamamoto et al . [6], Zdunkows k i
and Choronenko [45], and Hunt [46]. Neve rtheless, the calculations presented
here concernin g the gross opt ical properties of clou ds are by no means
invalid , but rather rep resen t a fi rst step toward a better understan d ing
and a more detailed examination of rad i at ive transfer in clou ds as i s
app l ica b le to satell i te p roblems .

CONCLUSIONS AND RECOMMENDATIONS

Thicknesses or dep ths require d for black body radiation have been s pecif i ed
for the cloud types studie d . Below these dep ths , the clouds will appear

• warmer than they actually are , as evident in Fi gure 13. When the cloud
temperature is known , it appears possible to deduce the surface temperature

• in the absence of water vapo r below the cloud base.

For satellite applications in which upwe lling radiance (i.e., intensity )
i s measured , the conventional conce pt of emissivity can no longer be
applicable. Instead , emiss i v i ty calculated on the basis of upwell in g
radiance should be introduce d , thus mak ing it appropriate for a proper
inter pretation of cloud-top temperatures. Note , however , the greater
the amount of liq ui d water is in a clou d , the les s is the difference
between the two.

Reflectivity by warm clouds in the 10-micrometer infrared band is normally
negligible.

The opti cal properties of a cloud are functions of wavelength , as also note d
by other authors . The cloud appears more “black” in the neighborhood of
the 11- to 13-m i crometer wi n dow than in any other infrared windows .

The liqui d water content of a clou d is an importan t micro phys i cal parameter
in relating directly to the degree of blackbody radiation. It requires
fu rther investiga tion to establish a functional relat ionshi p between

• the li quid water content of the cloud and the associated th i ckness for
blackbody radiation .

Durin g the next project, the computer p rog ram , which is now ca pable of
solving the radiative transfer equation for an inhomogeneous cloudy
atmosphere in the absence of water vapor absorption , will be modified to
incl ude such absorption both below and above the cloud as well as the
frequency response function of the satellite radiometer in current use.
In so doing, i t wi l l  be possible to compare theoret i cal rad i ance values
wi th those observed va l ues from satellite data streams when the radio—
mete r ’s fiel d of view is pa rtly or completely covered by clouds.
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